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Abstract This work features an analysis for the acceleration technique DIIS that is
standardly used in most of the important quantum chemistry codes, e.g. in DFT and
Hartree–Fock calculations and in the Coupled Cluster method. Taking up results from
Harrison (J Comput Chem 25:328, 2003), we show that for the general nonlinear case,
DIIS corresponds to a projected quasi-Newton/secant method. For linear systems,
we establish connections to the well-known GMRES solver and transfer according
(positive as well as negative) convergence results to DIIS. In particular, we discuss
the circumstances under which DIIS exhibits superlinear convergence behaviour. For
the general nonlinear case, we then use these results to show that a DIIS step can
be interpreted as step of a quasi-Newton method in which the Jacobian used in the
Newton step is approximated by finite differences and in which the according linear
system is solved by a GMRES procedure, and give according convergence estimates.
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1 Introduction

The DIIS (Direct Inversion in the Iterative Subspace) method introduced by Pulay
[37,38] is an acceleration technique for solvers for nonlinear problems that was orig-
inally designed to accelerate the self consistent field iteration (SCF, cf. [23]), but
has been found to be useful in a much broader context to improve convergence for a
variety of algorithms used in electronic structure calculations. Nowadays, DIIS is stan-
dardly used on top of the popular algorithms used in the context of density functional
theory (DFT) and Hartree–Fock calculations [17,43], being the two most important
methods for quantitative studies of larger electronic systems. In the context of the
SCF algorithm, DIIS stands out as the fastest method to get to a minimum once in
the convergence region [31]: it is also successfully applied to the iterative solution
of the Coupled Cluster (CC) equations [23], being mostly the method of choice for
qualitative description of smaller systems. Variants of DIIS have also proven to be
extremely efficient for simultaneous computation of eigenvalues and corresponding
eigenvectors (RMM-DIIS, [30]) and when having to deal with the problem of charge
sloshing that sometimes appears when DFT is applied to metallic systems [30]. Aside
from electronic structure calculation, DIIS is also utilized in molecular dynamics for
geometry optimization [13].

In an abstract framework, the DIIS method can be phrased as follows: The above
underlying problems of quantum chemistry are (typically nonlinear) equations of the
form

g(x∗) = 0. (1.1)

The basic iterative methods used in the context of, say, DFT or CC, consist in an update
step xn+1 := xn + rn, where the residual-like correction term, i.e. rn = −g(xn) or a
preconditioned, damped or approximate variant of this, is computed from the current
iterate xn . In contrast, DIIS exploits not only the information contained in xn and rn

but considers a number of previously computed iterates. DIIS defines x̃n+1 := xn+rn

in an intermediate step, and then computes in a supplementary step improved iterates

xn+1 =
n∑

i=�(n)

ci x̃i+1 =
n∑

i=�(n)

ci (xi + ri ) with
n∑

i=�(n)

ci = 1

by minimizing the least square functional

JDIIS(y) := 1

2

∥∥∥
n∑

i=�(n)

ciri

∥∥∥
2

(1.2)

over the set of all coefficient vectors (ci )
n
i=�(n) for which

∑n
i=�(n) ci = 1. Usually,

only a short history of previous iterates is considered, i.e. n − �(n) + 1 is a small
number in the above.
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Fig. 1 Iterations needed to converge some sample sample DFT/CCSD calculations with and without DIIS.
DFT calculation performed with bigDFT [5,17], a part of the ABINIT package [2,18,19]), CC calculations
performed with NWChem [8,28]

Often, the basic algorithm x̃n+1 = xn + r(xn) already produces a linearly conver-
gent sequence of iterates, see e.g. [9,40,43,47] for results in the context of quantum
chemistry, and if this is the case, DIIS typically approximately halves the number
of iteration steps needed to reach a prescribed precision, see the sample calculations
in Fig. 1. For this reason DIIS is often termed a convergence acceleration method;
nevertheless, there are even cases e.g. in the SCF iteration for DFT calculations where
convergence of the basic algorithm x̃n+1 := xn + r(xn) does not have to be guaran-
teed for the DIIS accelerated procedure to converge. If the actual iterates are close to
the solution, there are cases in which DIIS exhibits superlinear convergence. As an
alternative to DIIS, trust-region methods [48] and Broyden-like quasi-Newton meth-
ods [11] have been proposed for use in quantum chemistry. Comparison of DIIS with
quasi-Newton methods as e.g. BFGS shows that the methods behave quite similarly.
There are cases in the context of molecular dynamics where BFGS seems to be slightly
better if the problem under consideration is not well-conditioned [14]; in the case of
charge sloshing, DIIS seems to be superior to Broyden’s method [30]. Incorporation
of these and other ideas related to DIIS into the various physical applications of quan-
tum chemistry has led to a further improvement and additional variants of DIIS and
other acceleration techniques (often also termed “mixing schemes”) without adding
significant further costs, see e.g. [10,14,22,24,25,27,45,49]. In particular, a projected
version of Broyden’s backward or second method (usually referred to as “bad Broyden
method”) that was already proposed along with other Broyden type methods in 1978
[16], but not recommended there and scarcely used in practice for its seemingly infe-
rior convergence behaviour, has recently turned out to be a highly efficient method for
the numerical treatment of nonlinear equations of quantum chemistry in comparison
with other Broyden-type methods [34].

In the present paper we will show that in exact arithmetics, DIIS corresponds exactly
to this projected backward Broyden’s method mentioned above (see Sect. 3), thus mak-
ing the success of its application to quantum chemical problems no surprise at all—a
fact that is also implicitly contained in [22,45]. We first rewrite DIIS as a Broyden
type formula and then discuss the relation to some other Broyden type methods and
methods proposed in the context of quantum chemistry. In Sect. 4, we analyze as a
model problemn the convergence behaviour of DIIS when applied to linear equations.
We establish a relation to the well-known GMRES scheme and use this relation to
derive some (positive as well as negative) convergence estimates for DIIS applied to
linear equations in Theorem 4.3. In particular, we will find that for the linear case,
DIIS quite natually can turn non-convergent iterations into convergent ones. Section
5 then provides some convergence results for the nonlinear case. First of all, we prove
in Theorem 5.2 that the DIIS procedure as given in Fig. 2 is linearly convergent; in
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Fig. 2 The DIIS algorithm

Theorem 5.4, we will use linear convergence and both the relation to Broyden-like
methods and to the GMRES procedure to give a second, more refined convergence
estimate, showing that DIIS can be interpreted as a quasi-Newton method in which the
linearized (Newton) equation is solved approximately by a GMRES step for the linear
system and in which the Jacobian is approximated by finite differences. In practice,
“superlinear” convergence behaviour of DIIS is often observed in the sense that the
ratio ‖rn+1‖/‖rn‖ of successive residual norms decreases, and in the light of the anal-
ysis given here, we will along the way discuss the circumstances under which this
behaviour can/cannot set in, see Sects. 3.3, 4.4 and 5.2.

2 Notations and basic facts about DIIS

Throughout this work, we will denote by V a given Hilbert space with an inner product
〈·, ··〉, and denote the induced norm by ‖·‖. The dimension of V will be denoted by D,
where D = ∞ is admitted. We will be concerned with the root problem (1.1), where g
is a function that maps the space V to itself. The more general case where W is another
Hilbert space and a root of a function g : V → W has to be computed is included
if we can assume that the Jacobian J ∗ ∈ L(V, W ) of g at x∗ is invertible, and that
we have a cheaply applicable preconditioner P ∈ L(V, W ) at hand that approximates
J ∗ sufficiently well: Under these circumstances, P is also invertible, and instead of
computing the roots of g, we turn our attention to the function g̃(x) = P−1g(x) that
has the same roots as g, but maps V → V . In particular, the case where V is some
appropriate Sobolev space Hs(�) and W = V ′ is also covered. Also, the case where
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the basic iteration is damped or overrelaxated by a fixed parameter α is included by
considering g̃(x) = αg(x).

The DIIS procedure outlined in the introduction results in the algorithm from [37,
38], displayed in Fig. 2. The solution of the constraint minimization problem in step
(4) is usually computed from by application of standard Lagrangian calculus to (2.1):
this results in the linear system

(
B 1
1T 0

)(
c
λ

)
=

(
0
1

)
(2.3)

with B determined by the matrix coefficients b j,k = 〈g(x j ), g(xk)〉, �(n) ≤ j, k ≤ n
and 1 = (1 . . . 1) a vector of length n− �(n)+1, see [23] for an explicit derivation. In
step (3) of the algorithm, �(n), determining the number n− �(n)+ 1 of previous iter-
ates considered in the computation of xn+1, will generally be fixed unless the system
matrix B becomes ill-conditioned, in which case the number �(n) is systematically
reduced, see e.g. [38] for details.

3 Equivalence of DIIS to a projected Broyden’s method

3.1 Rewriting DIIS as a Broyden’s method.

In the present section, we show that the DIIS algorithm from Fig. 2 may be rewritten
as a projected variant of a “reverse” Broyden’s method,

xn+1 = xn − Hng(xn),

wherein Hn is a secant approximation of the inverse of the Jacobian matrix of g at xn ,
obtained from the previous iterates x�(n), . . . , xn and associated function evaluations
g(x�(n)), . . . , g(xn). This fact, also observed informally in [22] and in the context
of SCF in [45], will be the basis for the discussion of its relation to other Broyden-
type methods in parts (ii) and (iii), and to the analysis given below. We need some
preparations, taken care of next.

Definition 3.1 (Spaces of differences) For a given sequence of iterates x0, x1, . . . , xn

produced by DIIS, we define for i = 0, 1, . . . , n − 1 the differences

si := xi+1 − xi , yi := g(xi+1)− g(xi ) (3.1)

as well for n ≥ 1 as the spaces

Kn := span{si | i = �(n), . . . , n − 1}, Yn := {yi | i = �(n), . . . , n − 1},

123



1894 J Math Chem (2011) 49:1889–1914

in particular, Kn = Yn := ∅ if �(n) = n. We denote the orthogonal projector onto Yn

by Qn . Finally, we define the projected differences

ŷ0 := y0; ŷn := yn −
n−1∑

i=0

ŷi
T yn

ŷi
T ŷi

ŷi . (3.2)

��
Theorem 3.2 (Equivalence of DIIS and a projected Broyden’s method) The compound
iteration steps

xn→x̃n+1
DIIS→ xn+1 (3.3)

can equivalently be computed by the projected Broyden update formula

xn+1 = xn − (Cn Qn + (I − Qn)) g(xn) =: xn − Hng(xn), (3.4)

with the projector Qn from Definition 3.1, and in which Cn is a secant approximation
to the inverse of the Jacobian on the space of differences Y n, fixed by

Cn = 0 on Y⊥n , Cn yi = si for all i ∈ {�(n), . . . , n − 1}. (3.5)

If �(n) = 0 in each step, so that the full history of iterates is considered, the DIIS
inverse Jacobian Hn can be calculated from the Jacobian Hn−1 by the rank-1 update
formula

H0 = I, Hn+1 = Hn + (sn − Hn yn)ŷT
n

ŷT
n yn

, (3.6)

with the projected difference ŷn defined in (3.2).

Before we approach the proof of Theorem 3.2 and discuss the result in Sect. 3.2,
we note at first that for arbitrary n ∈ N, it is not hard to see that

span{g(x�(n)), . . . , g(xn)} = span{g(xn), y�(n), . . . , yn−1} (3.7)

= span{g(xn), Yn}. (3.8)

Therefore, the differences y�(n), . . . , yn−1 are linearly independent because g(x�(n)),

. . . , g(xn) are by definition of the DIIS algorithm; in particular, the update formula
(3.6) is well-defined.

We comprise some technical details needed for the proof of Theorem 3.2 in the next
lemma. Note that (iii) shows the uniqueness of the solutions of the DIIS minimization
task.
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Lemma 3.3 Let n ∈ N and a set of iterates x1, . . . , xn be fixed.

(i) There holds for all j ∈ �(n), . . . , n − 1 that

Kn = span{xi − x j | j �= i = �(n), . . . , n − 1}, (3.9)

Yn = span{g(xi )− g(x j )| j �= i = �(n), . . . , n − 1}. (3.10)

(ii) For any � < n ∈ N, any set of vectors v�, . . . , vn ∈ V and any set of coefficients
c�, . . . , cn ∈ R for which

∑n
i=� ci = 1, we have

n∑

i=�

civi = v j +
n∑

i=�
i �= j

ci (vi − v j ) (3.11)

for all j ∈ {�, . . . , n}, in particular;

x j + Kn =
{ n∑

i=�

ci xi

∣∣∣∣
n∑

i=�

ci = 1

}
, (3.12)

g(x j )+ Yn =
{ n∑

i=�

ci g(xi )

∣∣∣∣
n∑

i=�

ci = 1

}
(3.13)

for all such j .
(iii) There holds

min

{ ∥∥∥∥
n∑

i=�(n)

ci g(xi )

∥∥∥∥

∣∣∣∣
n∑

i=�(n)

ci = 1

}
= ‖(I − Qn)g(xn)‖. (3.14)

The minimizer (ci )
n
i=�(n)is unique and fulfils

n∑

i=�(n)

ci (g(xi )− g(xn)) = −Qng(xn). (3.15)

��
Proof To prove (i), observe that for all i ∈ {�(n), . . . , n − 1},

si = xi+1 − xi = xi+1 − x j − (xi − x j )∈ span{xi − x j | j �= i = �(n), . . . , n − 1}

and that vice versa,

xi − x j =
j−1∑

k=i

sk ∈ K n if i < j, xi − x j = −
i−1∑

k= j

sk ∈ K n if i > j,
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from which (3.9) follows. The proof for (3.10) is analogous. Equation (3.11) follows
from the constraint condition

∑n
i=� ci = 1, yielding

n∑

i=�

civi = v j − (1− c j )v j +
n∑

i=�
i �= j

civi = v j +
n∑

i=�
i �= j

ci (vi − v j )

for all j ∈ {�, . . . , k}. In particular, (3.13) follows from this together with (i), and
implies

inf

{ ∥∥∥∥
n∑

i=�(n)

ci g(xi )

∥∥∥∥

∣∣∣∣
n∑

i=�(n)

ci = 1

}
= inf{‖g(xn)− y‖ |y ∈ Yn},

from which (3.14), (3.15) can be concluded from the best approximation proper-
ties of Hilbert spaces. Finally, (ii) together with (3.8) and the linear independence of
g(x�(n)), . . . , g(xn) implies in particular that the vectors g(xn) − g(xi ), i =
�(n), . . . , n− 1 are linearly independent, so that the minimizer (ci )

n
i=�(n) is unique as

coefficient vector of the best approximation of g(xn) in Yn . ��

Proof of Theorem 3.2 By linearity, there follows that Cn(g(xi ) − g(xn)) = xi − xn

for i = �(n), . . . , n − 1, cf. the proof of Lemma 3.3. Using the definition of the DIIS
iterates and Lemma 3.3, we obtain

xn+1 =
n∑

i=�

ci x̃i+1 =
n∑

i=�(n)

ci xi −
n∑

i=�(n)

ci g(xi )

= xn +
n−1∑

i=�(n)

ci (xi − xn)−
⎛

⎝g(xn)+
n−1∑

i=�(n)

ci (g(xi )− g(xn))

⎞

⎠

= xn + Cn

⎛

⎝
n−1∑

i=�(n)

ci (g(xi )− g(xn))

⎞

⎠

−
⎛

⎝g(xn)+
n−1∑

i=�(n)

ci (g(xi )− g(xn))

⎞

⎠

= xn − Cn Qng(xn)− (I − Qn)g(xn) =: xn − Hng(xn).

This proves (3.4) and (3.5). To show (3.6), we note first of all that for each n ∈ N0,
Hn is fixed on Yn by the condition Hn yi = si for all i = �(n), . . . , n − 1, while on
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Y⊥n , Hn = I . We show by induction that the same holds for (3.6), which we denote
by

Ĥ0 = I, Ĥn+1 = Ĥn + (sn − Hn yn)ŷT
n

ŷT
n yn

for a moment. For n = 0, the assertion holds because Yn = ∅ and Ĥ0 = I by definition.
For n ∈ N, we have for all y ∈ Y⊥n that

Ĥn y = Ĥn−1 y + (sn−1 − Ĥn−1 yn−1)ŷT
n−1

ŷT
n−1 yn−1

y = y

because ŷn−1 ∈ Yn , so using the induction hypothesis, Ĥn = I on Y⊥n . Moreover, for
all i = 0, . . . , n − 2,

Ĥn yi = Ĥn−1 yi +
(sn−1 − Ĥn−1 yn−1)ŷT

n−1

ŷT
n−1 yn−1

yi = si + 0,

by induction hypothesis and definition of ŷn−1. Finally, for yn−1,

Ĥn yn−1 = Ĥn−1 yn−1 +
(sn−1 − Ĥn−1 yn−1)ŷT

n−1

ŷT
n−1 yn−1

yn−1 = sn−1,

completing the proof. ��
The next lemma that will be needed later in the Sect. 4 on linear problems, but also
holds in the nonlinear case and is therefore included here.

Lemma 3.4 If for fixed n ∈ N, �(i) = 0 for all i = 1, . . . , n, i.e. the full history of
previous iterates has been used in every previous step of the DIIS procedure and in
particular, g(x0), . . . , g(xn−1) are linearly independent, there holds

Kn = span{g(x0), . . . , g(xn−1)}. (3.16)

Proof We prove (3.16) by induction on n. For n = 1, g(x0) = x1 − x0, so the state-
ment holds in this case. For arbitrary n ∈ N, we exploit (3.8) again, so that to show
the assertion for n + 1, it suffices to show that xn − xn+1 ∈ span{g(xn), Yn} and that
dimKn+1 = n + 1: Using Theorem 3.2, we have

xn+1 − xn = Cn Qng(xn)+ (I − Qn)g(xn) (3.17)

and the first term on the right side is an element of

Kn ⊆ span{g(x0), . . . , g(xn−1)}
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by definition of Cn and induction hypothesis, while by the definition of the projec-
tor Qn , the second is in span{g(xn), Yn}. Because g(x0), . . . , g(xn−1) are linearly
independent, the second component on the right hand side of (3.17) (orthogonal to Yn)
is nonzero, implying with (3.8) that dimKn+1 = n + 1. This completes the proof. ��

3.2 Relation and comparison to other Broyden-type methods.

Theorem 3.2 shows that the DIIS procedure, together with the basic iteration method,
can be interpreted as a Broyden’s method, in which the iteration step of a Newton’s
method, consisting in the usually computationally too expensive solution of the linear
system

J (xn)sn = −g(xn) (3.18)

with J (xn) denoting the Jacobian of g at xn , is replaced by solving the equation

sn = −Hng(xn). (3.19)

Herein, Hn is a rank-(n−�(n)−1)-update of the identity, approximating J−1(xn) by
exploiting the information about J−1(xn) contained in the sequence of former iterates
x�(n), . . . , xn and according sequence of function values g(x�(n)), . . . , g(xn): For all
�(n), . . . , n − 1, the directional derivatives J (xn)sn are approximated by mapping
the corresponding finite differences yn of function values to sn , see (3.5). In pursu-
ing the ansatz of using differences of formerly calculated quantities to approximate
the Jacobian J (xn) (or its inverse), DIIS is thus similar to the various variants of
Broyden’s method (see e.g. [11,36]), and we will discuss this relation a little deeper
in the following. For this comparison, we suppose that �(n) = 0 for each n-th step
of DIIS, so that the full history of iterates is considered in each step until DIIS termi-
nates.

In Broyden’s original method [6], starting in our setting with the initial approximate
Jacobian B0 = I , the approximate Jacobian Bn+1 is a rank-1-update of Bn that fulfils
the secant condition

Bn+1sn = yn (3.20)

and has the additional property that the Frobenius norm1 ‖Bn+1 − Bn‖F is minimal
among all such possible updates Bn+1. The update is given by

B0 = I, Bn+1 = Bn + (yn − Bnsn)sT
n

sT
n sn

.

1 The Frobenius norm is only defined in finite dimensional spaces V ; in infinite dimensional spaces, the
difference Bn+1− Bn has to be a Hilbert-Schmidt operator for a meaningful extension of this concept. See
[20] for an alternative, more global characterization of the Broyden update in infinite dimensional spaces V .
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Although Broyden’s method does not retain the original quadratic convergence of
the (exact) Newton method (3.18), it is q-superlinearly convergent, meaning that the
sequence of quotients

qn := ‖xn+1 − x∗‖
‖xn − x∗‖ (3.21)

is not only bounded by a constant c < 1 as in the case of (q-)linear convergence,
but converges to zero (see [11] for the classical case and [20] for extended results
on the operator case). The DIIS-quasi-Newton method (3.4) is a combination of
two variants of Broyden’s method: The first one is the reverse Broyden’s method
in which the inverse J (x∗)−1 of the Jacobian is approximated directly by succes-
sive rank-1-updates Hn+1 fulfilling Hn+1 yn = sn and having minimal deviation with
respect to the Frobenius norm from Hn , resulting in2

H0 = I, Hn+1 = Hn + (sn − Hn yn)yT
n

yT
n yn

.

Although this method is also termed as “bad Broyden’s method” due to its convergence
behaviour in practice, that is inferior to the above “forward” technique, the proof for
q-superlinear convergence of the forward method can be modified to show that the
reverse Broyden’s method also converges q-superlinearly [7].

The second method related to (3.4) is a modification of the “forward” Broyden
method, the Broyden’s method with projected updates [16], developed further in [35].
It consists in the ansatz that the secant condition (3.20) should not only be fulfilled for
the latest secant sn , but by demanding

Bn+1si = yi for all 0 ≤ i ≤ n, (3.22)

while in contrast, the approximations Bn+1 computed in Broyden’s method need not
fulfil the condition. This results in the formula

B0 = I, Bn+1 = Bn + (yn − Bnsn)ŝT
n

ŝT
n sn

, (3.23)

in which ŝn is the orthogonalization of sn against all previous differences si . The
projected method has the advantage that when applied to linear problems, the exact
solution is computed in the (D+1)-th step [16], a property that might also have positive
effect on problems that are “close to linear” in the sense that the second order terms in
the Taylor expansion are relatively small.3 Comparison of (3.5) and (3.23) now shows

2 This yields a method different from the “forward” Broyden method, for which B−1
n can be computed

as a (different) rank-1 update of B−1
n−1 by the Sherman-Woodbury-Morrison formula, see e.g. [11] for an

introduction and a comparison of both methods.
3 It can also be shown that the classical Broyden’s method computes the exact solution to a linear problem
after 2D steps, see [15].
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that DIIS (with full history) is the reverse variant of the projected Broyden’s method,
and we already noted that the reverse method (i.e. DIIS) is also introduced in [16],
Algorithm II’, but not analysed further due to its practical behaviour which—as in
the non-projected case—seems to be inferior to the forward method, also see [16] for
comments on numerical tests.

This is in agreement with the outcome of [22], in which the forward projected
method from [16] is re-introduced as an improvement of DIIS, termed the KAIN
(Krylov Accelerated Inexact Newton) solver there and turning out to be superior to
DIIS for the test problems attacked there, and also with the result of [24], in which
an “augmented Roothaan–Hall” algorithm is presented, which corresponds to a for-
ward Broyden’s method for the Roothaan-Hall method of Hartree–Fock/Kohn–Sham
theory. In contrast to this though is the more recent publication [34], which by test-
ing different Broyden schemes on a range of quantum chemical problems comes to
the conclusion that the Multi-Secant Second Broyden method (MSB2, again corre-
sponding to DIIS) is the only one that converges in all of the test cases. Particularly
successful is DIIS applied to the self consistent field iteration, where it is found to be
superior to comparable methods [31]. The interested reader is also referred to [29] and
the references given therein for more related Newton-type algorithms using Krylov
spaces spanned by finite differences.

3.3 Superlinear convergence of DIIS?—Part I

We conjectured that as from the “good/forward Broyden’s method” to the “bad/reverse
Broyden’s method”, we might transfer theoretical results on q-superlinear convergence
on the projected forward method (given in [16]) to the projected reverse variant, i.e.
to DIIS. Unfortunately, the proof of q-superlinear convergence given in [16] is erro-
neous, and this flaw is not straight-forward to mend. In order to obtain results like
q-superlinear convergence (as a limit process for n → ∞), a replacement/discard-
ing strategy for former iterates that are “almost linearly dependent” will have to be
formulated instead of just restarting the algorithm as in [16], and although practical
approaches by an SVD of the DIIS inverse Jacobian have been formulated [44], the
formulation of a rigurous stategy is to our mind far from obvious, also see the further
comments in [39].
We will take a little different approach here and investigate the transient (i.e. “short-
term”) convergence behaviour of DIIS by treating it as a nonlinear variant of the
well-known GMRES procedure. Although sometimes in practical DIIS calculations,
“superlinear” convergence behaviour can be observed in the sense that the ratio
‖r(xn+1)‖/‖r(xn)‖ of the residuals decays with increasing iteration number n, our
general experience with DIIS is rather reflected exemplarily in Fig. 3, where for the
sample calculations from Fig. 1, the above ratio has been plotted against the number
of iterations.

In our theoretical analysis in Sect. 5, we will find that the worst-case short-term
convergence behaviour of DIIS essentially depends on balancing two opposing error
terms associated with the number of previous iterates considered, see the remark after
Theorem 4.3 and also Sect. 4.4. To derive these results, we now first turn to the model
case of linear problems.
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(a) (b) (c)

Fig. 3 Ratio of the residuals ‖r(xn+1)‖/‖r(xn)‖ in the course of the iteration for the sample calculations
displayed in Fig. 1. a DFT for cinchonidine, b CCSD for N2, c CCSD for LiH. Dashed line basic iteration
only, solid line with DIIS acceleration

4 DIIS applied to linear problems

4.1 Viewpoint and assumptions

As a model problem, we will now investigate the special case where DIIS is applied
to a linear equation, i.e. for A : V → V linear and bounded, b ∈ V , an x∗ ∈ V is
sought such that

g(x∗) = Ax∗ − b = 0. (4.1)

This approach will not give insights on the discussion of possible linear convergence
of DIIS, but also be used as a basis for the analysis of DIIS applied to nonlinear
equations. We use the negative gradient direction as update directions,

r(xn) := −g(xn) = b − Axn . (4.2)

By modifying g appropriately (see the remarks in Sect. 2), preconditioned or damped
gradients used in the basic iteration scheme are also included; also, weak equations
are covered. If we suppose that the iteration scheme is convergent, it is a well-known
problem that convergence of this scheme can be extremely slow, especially if the con-
dition number of A is large (see e.g. [21]). To overcome these problems, procedures
like the well-known GMRES or cg solvers were developed, leading to accelerated
convergence of the underlying scheme. We will now show that DIIS now inherits
some of these properties from GMRES because the minimization problems solved
and the subspaces used coincide.

We will assume that A is invertible, so that x∗ is unique. Also, we will assume
that in each step (2) of the DIIS algorithm displayed in Fig. 2, the full set of previous
vectors x0, . . . , xn, g(x0), . . . , g(xn) is used to minimize the least square functional
(1.2). Note that this implies that the vectors g(x0), . . . , g(xn) have to be linearly inde-
pendent, and we will see later that this indeed is the case unless g(xn) = 0, in which
case the algorithm terminates.
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In the nth step of a DIIS-accelerated gradient solver, the functional (1.2) is min-
imized over the space xn + Kn . For the linear problem (4.1), this minimizer is by
Lemmas 3.3 and 3.4 given by

x̄ = argmin∑n
i=1 ci=1

{∥∥∥∥
n∑

i=0

ci g(xi )

∥∥∥∥
2}

= argmin
(ci )

n−1
i=0 ∈Rn

{∥∥∥∥A

(
x0 +

n−1∑

i=0

ciri

)
− b

∥∥∥∥
2}
;

and using linearity once more, it is not hard to see that the next DIIS iterate is given
by

xn+1 :=
n∑

i=0

ci x̃i+1 :=
n∑

i=0

ci xi +
n∑

i=0

ci g(xi ) = x̄ + r(x̄). (4.3)

For a comparison of DIIS with Krylov subspace methods, we now introduce for a
given starting value v0 ∈ V , n ≥ 1 the well-known Krylov spaces

Kn(A, r(v0)) := span{Air(v0) : i = 0, . . . , n − 1}. (4.4)

We remind the reader that one point of view on Krylov subspace methods for linear
systems is that they consist in iterating the two following steps:

(i) Minimize a given error functionals J over the space v0+Kn(A, r(v0)) to obtain
the next iterate vn ∈ v0 + Kn(A, r(v0)).

(ii) Compute Anr(v0) and construct the next Krylov space Kn(A, r(v0)).

If A is symmetric, the well-known method of conjugate gradients (“cg”) is an example
for such a method, consisting in minimization of the functional

Jcg(y) = 1

2
〈A(y − x∗), y − x∗〉. (4.5)

over the respective affine Krylov spaces v0 + Kn(A, r(v0)). With b̃ = b − Av0, and
the minimizer written as vn = v0 + δn , δn ∈ Kn(A, r(v0)), the first order condition
for (4.5) is the Galerkin (orthogonality) condition Aδn − b̃⊥Kn , or more explicitly,
〈Aδn − b̃, v〉 = 0 for all v ∈ Kn . Another example is given by the least-squares
functional

JL S(y) = 1

2
〈A(y − x∗), A(y − x∗)〉 = 1

2
‖Ay − b‖2. (4.6)

The first order condition for (4.6) is given by the Petrov-Galerkin condition

〈Aδn − b̃, Av〉 = 0 for all v ∈ Kn . (4.7)
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This is an oblique projection method [41] with

Aδn − b̃ ⊥ AKn, (4.8)

i.e. the residual Aδn− b̃ of the optimal subspace solution vn is A-orthogonal to Kn , or,
in other words, the difference vn − x∗ to the true solution x∗ is A2-conjugate to Kn .
The Krylov method associated with (4.6) is the well-known GMRES-method [41,42],
which for symmetric matrices results in the method of conjugate residuals (“cr”, see
e.g. [21]).

Let us note for later purposes that the Krylov spaces (4.4) allow for the alternative
characterization

Kn(A, r(v0)) = span {r(v0), . . . , r(vn−1)}, (4.9)

see e.g. [21], Theorem 9.4.2 for a proof.

4.2 Connection between DIIS and GMRES

Comparison of (4.6) and (1.2) shows that the functionals used in GMRES and DIIS
coincide. We will now further clarify the relation between DIIS and GMRES, and
thus also between GMRES and the projected Broyden’s method from Theorem 3.2.
Although Broyden-like secant methods have been proposed as an alternative to GM-
RES to solve large-scale linear equations (see [12] and references therein), we are not
aware of literature where the below connection between GMRES and the projected
Broyden’s method from Theorem 3.2 is made explicit. A similarity between DIIS and
GMRES is noted in [31].

Lemma 4.1 If the starting values of a GMRES procedure and a DIIS procedure
applied to the linear system (4.1) coincide, x0 = v0, there holds

Kn(A, r(v0)) = Kn (4.10)

for any n ∈ N. The GMRES procedure and the DIIS procedure, applied to linear
problems, therefore solve the same minimization problem in each step (only using a
different parametrization). The iterates xn of the DIIS procedure and the iterates vn

of GMRES are related by

xn+1 = vn − r(vn). (4.11)

There holds

‖r(vn+1)‖2 ≤ ‖r(xn+1)‖2 ≤ ‖I − A‖2‖r(vn)‖2. (4.12)

��
In Fig. 4, the result of Lemma 4.1 is displayed in a flow chart comparing GMRES

and DIIS; the iterates of DIIS are denoted by xn , those of GMRES by vn .
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Fig. 4 The (linear) DIIS procedure vs. the GMRES algorithm

Proof We use the representation (4.9) for the Krylov spaces, and the analogous one
from Lemma 3.4 for the spaces used in DIIS,

Kn = span{r(x0), . . . , r(xn−1)}.

We proceed by induction. For n = 1,

K1(A, r(v0)) = span{r(v0)} = span{r(x0)} = K1

holds trivially, and x1 = v0− r(v0) holds by definition of DIIS. Now let the assertion
hold for fixed n ∈ N. We then get that

Kn+1 = span{Kn, r(xn)}, Kn+1(A, r(v0)) = span{Kn(A, r(v0)), r(vn)},

so that by hypothesis, it suffices to show r(xn) ∈ Kn+1(A, r(v0)) and that r(vn) ∈
Kn+1. Using the hypothesis xn = vn−1 − r(vn−1), we have

r(xn) = A(vn−1 + r(vn−1))− b = r(vn−1)+ Ar(vn−1);

the first term to the right is in Kn(A, r(v0)) according to (4.9), while the second is in
Kn+1(A, r(v0)) according to (4.4), so r(xn) ∈ Kn+1(A, r(v0)) follows. Vice versa,

Ar(vn−1) = r(xn)− r(vn−1) ∈ Kn+1

because r(xn) ∈ Kn+1 and r(vn−1) ∈ Kn(A, r(v0)) = Kn . Thus,

Kn+1 = Kn+1(A, b),
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and because the functionals (4.6) and (1.2) also coincide, DIIS and GMRES both com-
pute the same minimizer x̄ on x0+Kn+1. While GMRES sets vn+1 = x̄ by definition,
we have xn = x̄ − g(x̄) in DIIS, see (4.4). This shows (4.11).

For the left inequality of (4.12), note that xn+1 ∈ x0 + Kn , and that vn minimizes
the 2-norm of the residual over that space. The estimate on the right hand side follows
directly from (4.11). ��

Lemma 4.1 shows that we can interpret GMRES as a variant of the DIIS/projected
Broyden method for linear problems, exhibiting in the symmetric case the well-known
advantages like the shortening of history [21]. While in the linear cases, the Krylov
spaces (4.4) and the space (4.9) containing the current residuals coincide, this is not
the case anymore in the case of nonlinear problems, and the residuals g(xn) then have
to be evaluated explicitly, leading to the DIIS method. DIIS can thus be interpreted as
a globalization of the least square ansatz of GMRES to the nonlinear case. Because
in GMRES, only the former two iterates have to be respected to compute the residual
minimizer over the whole Krylov space, it will be interesting to investigate explicitly
how the omission of former iterates influences the convergence of DIIS when applied
to mildly nonlinear problems. As a first corollary, Lemma 4.1 implies the following
termination property of “linear DIIS”.

Corollary 4.2 In exact arithmetic, the DIIS procedure, applied to the iteration scheme
x̃n = xn − r(xn) for the linear equation (4.1), terminates after n ≤ D steps with the
exact solution xn = x∗.

Proof Let us note at first that from Lemma 4.1, the vectors (3.16) building the spaces
Kn become linearly dependent if and only if the vectors in (4.9) become linearly
dependent. It is well-known [21,41] that for GMRES, there holds r(vi )⊥A Ki (A, b)

for all i ∈ N. In particular, the vectors in (4.9) become linearly dependent if and only
if r(vi ) = 0 and vi = x∗ is the solution of (4.1), and this will happen at latest when
i = D−1. For the corresponding DIIS iterate, there then holds xi+1 = vi+r(vi ) = x∗
by (4.11), completing the proof. ��

4.3 Convergence of DIIS for linear problems

We will now transfer well-known convergence properties of GMRES [33] to ana-
lyze the convergence behaviour of DIIS for the model problem of linear equations.
Theorem 4.3 shows that as for GMRES, the worst-case convergence behavior of DIIS
applied to normal matrices A is completely determined by the spectrum of A. In the
nonnormal case however, the convergence behavior of the GMRES method may not
be related to the eigenvalues in any simple way and understanding the convergence
of GMRES in the general non-normal case still remains a largely open problem, and
this property is thus also inherited by the DIIS procedure. The application of DIIS to
nonnormal matrices A also allows for the counterexample (iii), which also has some
implications for the discussion of superlinear convergence of DIIS. See the proof and
below for more remarks.

123



1906 J Math Chem (2011) 49:1889–1914

Theorem 4.3 (Convergence of DIIS applied to linear problems)

(i) Let ‖I − A‖ = ξ. If A is symmetric positive definite, and

γ ‖x‖2 ≤ 〈Ax, x〉 ≤ 	‖x‖2

holds for all x ∈ V , the residuals of DIIS obey the estimate

‖r(xn+1)‖ ≤ ξ
2cn

1+ c2n
‖r(x0)‖, (4.13)

in which c is given by c = (
√

κ − 1)/(
√

κ + 1) < 1, κ := 	/γ .
(ii) If A is diagonalizable with A = X DX−1, where D is a diagonal matrix con-

taining the eigenvalues of A, and if the eigenvalues of A are contained in an
ellipse with center c, focal distance d and semimajor axis a which excludes the
origin, we let κ(X) = ‖X‖2‖X−1‖2 be the condition number of X and there
holds

‖r(xn+1)‖ ≤ ξ · κ(X)
Tn( a

d )

Tn( c
d )
‖r(x0)‖, (4.14)

with Tn denoting the n-th Chebyshev polynomial and ξ as in (i). In particular,
if A is normal, the estimate (4.14) holds with κ(X) = 1.

(iii) Suppose we are given a nonincreasing sequence of D positive numbers

r0 ≥ · · · ≥ rD−1 > 0

and D complex numbers λ1, . . . , λD. Then there exists a matrix A ∈ C
D×D

having the eigenvalues λ1, . . . , λD, a starting value x0 and a right hand side
b such that DIIS, applied to the tuple (A, b, x0), gives a sequence of iterates
x0, x1, . . . , xD = x∗ for which

‖r(xi )‖ ≥ ri for all 0 ≤ i ≤ D − 1.

Proof Theorem 4.3 follows together with Lemma 4.1, Eq. (4.12) from the respective
properties of the GMRES procedure: Under the assumptions made in (i), there holds

‖Axn − b‖ ≤ 2cn

1+ c2n
‖Ax0 − b‖, (4.15)

for the iterates of GMRES, see e.g. [21], Theorem 9.5.6 for the proof; the results also
globalize straightforwardly to the operator case. The analogous estimate for the case
(ii) where A may only be diagonalizable is for instance proven in [41], Proposition
6.32 and Corollary 6.33. The counterexample (iii) is a reformulation of the central
result of [1], where an analogous statement is proven for GMRES. ��
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We remark that Theorem 4.3 gives an insight on how DIIS accelerates convergence
in the linear case: While the basic iteration scheme

xn ← xn−1 − rn−1,

for instance a simple (maybe damped) gradient algorithm, may converge slow or not
at all, DIIS optimizes the residual over the whole space Kn , and thus inherits the nice
convergence behaviour of GMRES. In particular, for the finite history of length 2, this
leads to a line search over the space xn−1 + αr(xn−1), α ∈ R, so that in this case,
DIIS may turn non-convergent iterations into convergent ones as a consequence of
the convergence of the Richardson iteration with properly chosen α. We note that this
behaviour is also sometimes observed when DIIS is applied to nonlinear systems, see
e.g. [34] (where DIIS corresponds to the MSB2-method).

4.4 Superlinear convergence, part II: Conclusions from the linear case

When applied to finite dimensional systems, the DIIS method provides the exact
solution after at most n = D steps according to Lemma 4.2. The general notion of
(super-)linear convergence (as a limit process for n →∞, see 3 (ii)) is therefore not
appropriate for examination of the convergence behaviour in this case. An alternative
that is also of more practical interest is the examination of how fast the sequence of DIIS
residual norms‖r(xn)‖decays in the course of a moderate number n � D of iterations.

The DIIS scheme essentially reproduces the convergence behaviour of the GMRES
scheme, for which in many cases some kind of “superlinear” convergence behaviour
can be observed in practice in the sense that the ratio ‖r(xn+1)‖/‖r(xn)‖ of the resid-
uals decays in the course of the iteration [26], and some results on circumstances
under which the GMRES algorithm exhibits in some sense superlinear convergence
are available: In [46], it is shown that the decay of the residual norms can be related to
how well the outer eigenvalues of A are approximated by the Ritz values of A on the
trial subspaces Kn ; to the authors’ knowledge, there is no analysis available though
under which circumstances this approximation property is given. Other approaches
relate superlinear convergence behaviour to certain properties of the a priori informa-
tion provided by the data A, b and x0, see e.g. [3,4] for corresponding results for the
related [21] cg-method.

Neverless, Theorem 4.3 (iii) also shows that such “superlinear convergence behav-
iour” cannot always be expected for DIIS/GMRES, also cf. e.g. the last numerical
example in [46].

5 Convergence analysis for DIIS

In this final section, we will give two convergence results for DIIS applied to nonlinear
problems. We saw that DIIS can be reformulated as a projected Broyden method, and
we at first will follow the lines of proof that are generally pursued in this context, and
therefore as a first step prove that DIIS is locally linearly convergent if the underlying
iteration has this property. Linear convergence is then usually used to prove sharper
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results like superlinear convergence, see e.g. [11]. For the DIIS/projected reverse
Broyden scheme, though, the corresponding proofs do not extend straightforwardly,
cf. the remarks at the end of Sect. 3; moreover, Theorem 4.3 (iii) shows that if super-
linear convergence can be shown for DIIS at all, there are cases where the superlinear
convergence behaviour sets in after n > D steps, while in the context of quantum
chemistry, D is usually much larger than the number of maximal iteration steps.

We will therefore show instead in Theorem 5.4 that DIIS combines the favourable
properties of Newton’s method with those of a GMRES solver applied to solve the
actual linearized Newton’s equation, where additional errors only arise from the error
made in the finite difference approximation of the Jacobian J (x∗).

5.1 Assumptions and linear convergence

Our analysis will be based on the following assumptions. Additionally to those which
are standard in the analysis of quasi-Newton methods, we specify a more precise
condition for the linear independence of former differences y�(n), . . . , yn−1 than was
stated in the DIIS algorithm in Fig. 2.

Assumptions and Notations 5.1 We assume the function g : V → V be differen-
tiable in an open convex set E ⊆ V , and that g(x∗) = 0 holds for some x∗ ∈ E .
Denoting for A ∈ L(V ) its operator norm by ‖A‖, we further assume that for some
K ≥ 0,

‖g′(x)− g′(x∗)‖ ≤ K‖x − x∗‖ (5.1)

holds for all x ∈ E , and that the Jacobian J := g′(x∗) is nonsingular. We will denote

γ := ‖J−1‖ = ‖g′(x∗)−1‖. (5.2)

We will also assume that

‖I − J−1‖ < δ (5.3)

is sufficiently small. If this is not the case, we can use the function g̃(x) = P−1g(x)

instead, where P is an approximation of J , and the above condition is then replaced by
the condition that g can be preconditioned sufficiently well such that ‖I− J−1 P‖ < δ.

Finally, we will assume that for the former iterates x�(n), . . . , xn considered in the
step n→ n + 1, the corresponding differences of function values fulfil

‖Pj �=i yi‖ ≥ ‖yi‖
τ

for all i = �(n), . . . , n − 1 (5.4)

for some τ > 1, where Pj �=i denotes the projector on

Yn, j �=i = span{y j |i = �(n), . . . , n − 1, j �= i}.

��
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Note that results analogous to the ones below also hold if the Lipschitz condition
(5.1) is replaced by a more general Hölder condition as used e.g. in [11,36]. Because
the functions used in quantum chemistry are usually locally Lipschitz continuous, we
refrained from this generalization here.

The first convergence result we prove is that the DIIS method is (q-)linearly
convergent for sufficiently good starting values. The according result is stated in the
next theorem.

Theorem 5.2 (Linear convergence of DIIS) Let x0, x1, . . . , be a sequence of iterates
produced by DIIS update scheme from Fig. 2—or equivalently, computed from (3.4),—
where in each step n, the number of former iterates y�(n), . . . , yn used to build the
subspace Kn is chosen such that the linear independence condition (5.4) is fulfilled.

Then, the sequence x0, x1, . . . , is locally linearly (q-)convergent for any 0 < q <

1/(2τ), i.e. there are constants

δ = δ(q, τ, K ), ε = ε(q, τ, K ) > 0

such that if

‖I − J−1‖ ≤ δ, ‖x0 − x∗‖ ≤ ε,

we have xn ∈ E and there holds

‖xn+1 − x∗‖ ≤ q · ‖xn − x∗‖ (5.5)

for all n ∈ N.

The quite lengthy and technical proof for Theorem 5.2 is essentially in analogy to
the analysis from [16] for the “forward” projected Broyden scheme, and therefore not
presented here for sake of brevity; we refer the interested reader to [39], where the full
proof is being performed. We only note that some additional technical tricks enable
us to bound the according error terms without dependence on the dimension D of the
space, in contrast to exponential dependence on D in the estimates from [16] which
would render such estimates useless in the context of electronic structure calculations.

5.2 A refined convergence estimate for DIIS

Our second convergence result will show that DIIS can be interpreted as a quasi-
Newton method, in which the Newton equation (5.6) is solved approximately by a
GMRES/DIIS step for the linear system, and in which the Jacobian J (resp. J (xn) =
g′(xn)) is approximated by finite differences, see also the remarks below. We introduce
the necessary notation in the next definition.

Definition 5.3 Let n ∈ N be fixed and let us denote by z∗ the exact solution of the
linear equation

J z∗ = J xn − g(xn) =: bn (5.6)
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By zi , �(n) ≤ i ≤ n + 1, we denote the iterates of a DIIS procedure applied to the
linear equation (5.6) with starting value z�(n) := x�(n). Thus,

zi+1 = zi − Gir(zi ),

in what r(zi ) = J zi − bn is the residual associated with the linear equation (5.6), and
Gi is the DIIS inverse Jacobian, fulfilling

Gi (r(zi )− r(zi+1)) = zi − zi+1

for all �(n) ≤ i ≤ n, see Theorem (3.2). We define the associated residual reduction
factors,

di−�(n) := ‖r(zi )‖
‖r(z�(n))‖ .

In the case that r(zi ) = 0 for some i = �(n), . . . ,≤ n + 1, we define zi+ j := zi for
all j ∈ N. ��
Note that the factors di−�(n) are bounded by the statements for linear DIIS given in
Theorem 4.3. We now formulate the announced second convergence estimate for DIIS
under a little more restrictive assumptions.

Theorem 5.4 (A refined convergence estimate for DIIS) Let the assumptions of
Theorem 5.2 hold, so that DIIS is linearly convergent with convergence factor q.
Then there are δ = δ(q), ε = ε(q) > 0 such that if

‖I − J−1‖ ≤ δ, ‖x0 − x∗‖ ≤ ε

and if

�( j) = �(n) for all �(n) ≤ j ≤ n,

the “residual error” ‖g(xn+1)‖ can be estimated by

‖g(xn+1)‖ ≤ c1‖g(xn)‖2 + c2 · dn−�(n) ‖g(x�(n))‖ + c3‖g(x�(n))‖2, (5.7)

for all n ∈ N, with dn−�(n) is the convergence factor in the (n − �(n))-th step of
the DIIS solution of the linear auxiliary problem defined in 5.3, and where c1, c2, c3
depend on δ, K , and c2, c3 additionally on the initial error ‖x∗ − x�(n))‖ and q.

Again, we skip the proof here for reasons of brevity, referring the reader to [39]
and only giving some general notes. The estimate (5.7) bases on the decomposition

‖g(xn+1)‖ ≤ ‖g(z∗)‖︸ ︷︷ ︸
(I)

+‖g(zn+1)− g(z∗)‖︸ ︷︷ ︸
(II)

+‖g(xn+1)− g(zn+1)‖︸ ︷︷ ︸
(III)

(5.8)
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of the error, with the quantities zn+1, z∗ from Definition 5.3. A (quite lengthy) estima-
tion of the single terms gives the three error components of the estimate (5.7). Those
three error components have straight-forward interpretations:

• The first term (I) represents the modeling (linearization) error of (the exact)
Newton’s method, where the correction equation (5.6)4 is solved exactly, lead-
ing to the well-known quadratic error term.

• The second term (II) represents the error made in solving (5.6) approximately
by a GMRES/DIIS step on the actual subspace xn + Kn , thus incorporating the
convergence rate of the DIIS/GMRES from Theorem 4.3.

• The third error term (III), that can grow large if many older iterates are regarded,
is a worst-case estimate for the error made in the finite difference approximation
of J ∗ resp. J (xn).

We conjecture that the third error term is bounded by ‖ f (x�(n))‖ · ‖ f (xn)‖, so that
the result given here is presumably not optimal, but we were not able to show this so
far. We also note that the restrictive assumption that �( j) = �(n) for all �(n) ≤ j ≤ n
(meaning that in the DIIS procedure, K�(n) = ∅, and that the used Krylov spaces
K j are constantly increased without discarding iterates; in particular, (5.4) has to be
fulfilled in each step) could not be abolished without the error term ‖g(x�(n))‖ in the
third term in (5.7) having to be replaced by the less favourable term ‖g(x�(�(n)))‖.

Note that the second and third error term in (5.7) are opposing perturbations of the
quadratic convergence given by the first term: The error term associated with the DIIS
procedure for the linear problem (5.6) is reduced with an increasing number of former
iterates, according to the well-known theory for the associated GMRES procedure,
and thus gives better bounds the longer the history is chosen if the convergence of the
GMRES procedure is favourable, e.g. superlinear. On the contrary, the error bound
for the finite difference approximation gets worse the more former iterates are taken
up in the procedure. In order to obtain the best bounds for convergence rates for the
DIIS procedure, the two error terms thus have to be balanced out, and in agreement
with this, practical experience with GMRES seems to indicate that the number of
iterates has to be kept moderate in order to keep the procedure efficient, especially if
the iterates become “almost linearly dependent”, i.e. if the constant τ gets large, see
[27,38]. Estimate (5.7) shows that such an inefficiency can solely be due to the effects
of nonlinearity, contained in the third error term, so that in principle, if g is “rather
nonlinear” in the sense that the constant K in (5.1) is large, it is advisable to discard
old iterates more often.

For linear problems, the first and last error terms in (5.7) are zero. By a continuity
argument, we can heuristically conclude that if in contrast to the situation discussed
in (iii), the nonlinearity, i.e. the constant K in (5.1), is small, the convergence of the
DIIS is mainly governed by that of the DIIS/GMRES procedure for the associated
linear problem. We note that in the context of electronic structure calculations, similar
assumptions entered into our convergence analysis for DFT [43] and CC [40], and
they seem to be in good agreement with practice.

4 Or alternatively, where the “real” Newton equation J (xn)(xn+1 − xn) = F(xn) is solved. Eq. (5.6) was
chosen here for convenience, but it is not hard to see that replacing J by J (xn) only adds anther quadratic
error term.
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In particular, if the Jacobian is symmetric, for instance if (1.1) is the first order
condition of a minimization problem as in DFT, the worst-case convergence behav-
iour of the DIIS procedure is mainly determined by the spectral properties of J ,
while for nonsymmetric Jacobians, properties of the right hand side etc. play a role,
cf. Sect. 4. Thus, “superlinear convergence” of the algorithm can be expected if the
DIIS/GMRES procedure for the underlying linear problem has this property already
for a small number of steps, so that the third error term provoked by the nonlinearity
of g and the associated finite difference approximation of J can be kept sufficiently
small by discarding old iterates.

6 Concluding remarks

We have identified DIIS (in combination with the basic iteration scheme) with the
reverse, projected Broyden’s method given by formula (3.4). By this connection
between DIIS and the family of Broyden-like methods and Krylov space methods,
the development of new problem-adapted variants of DIIS and related convergence
accelerators may therefore well profit from the theoretical as well as from the practical
experience made with Broyden-like methods and Newton-Krylov type methods. Com-
parison of practical results for DIIS (corresponding to the reverse, projected Broyden’s
method, MSB2 [34]) to other Broyden’s methods (e.g. the projected forward method
KAIN [22] resp. the augmented Roothaan-Hall method [24]) gives an ambivalent
picture. In some cases DIIS seems to be inferior to the according “forward” method
[16,22,24]. On the other hand, DIIS provides a great amount of examples where it is
applied to quantum chemical problems with great success, also in direct comparison
with Broyden type methods [34], and where it may be preferred due to its simple
implementation in the form of DIIS. From this perspective, hybrid schemes combin-
ing forward and backward approaches (as the recent [25]) would be a worthwhile
a closer investigation, in particular because the according systems to be solved are
quite small. The connection between the variants of Broyden’s method popular and
well-analysed in the context of numerical analysis should now be exploited further
to improve the performance of DIIS. For instance, the trust region approach for the
forward Broyden’s method , applied successfully to quantum chemical problems in
[24] (“augmented Roothaan-Hall method”) to achieve stable convergence towards a
global minimum, may be modified to devise trust-region methods for the backward
(DIIS) approach by using the formulation for DIIS given in Theorem 3.2.

For DIIS applied to linear equations, we found that the convergence is fixed by
the mostly favourable convergence behaviour of the according GMRES procedure.
DIIS, applied to nonlinear equations, can therefore be viewed as a globalization of
GMRES to nonlinear equations, and we have shown that the convergence behaviour
is still related to the properties of a linear equation for the Jacobian J if nonlinear
effects are small. This is in agreement with similar results for Broyden’s method [20].
Our results do not fully explain the extremely good convergence behaviour observed
in the convergence regime of the SCF procedure though, and we therefore expect that
our results can be sharpened if one considers the particular case of the SCF procedure.
If nonlinearities are mild, our results indicate that DIIS still shares the favourable
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properties of the according GMRES procedure. A further systematic investigation of
the influence of increasing nonlinearities on the performance of the DIIS solver would
therefore be desirable in the future.
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